Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

閉める
閉める
  • Netskopeが選ばれる理由 シェブロン

    ネットワークとセキュリティの連携方法を変える。

  • 導入企業 シェブロン

    Netskopeは、フォーチュン100社の30社以上を含む、世界中で3,400社以上の顧客にサービスを提供しています。

  • パートナー シェブロン

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。

ネットスコープが2024年Gartner®社のシングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご覧ください。

レポートを読む
顧客ビジョナリースポットライト

革新的な顧客が Netskope One プラットフォームを通じて、今日の変化するネットワークとセキュリティの状況をどのようにうまく乗り越えているかをご覧ください。

電子書籍を入手する
顧客ビジョナリースポットライト
Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

Netskope パートナーについて学ぶ
色々な若い専門家が集う笑顔のグループ
明日に向けたネットワーク

サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。

ホワイトペーパーはこちら
明日に向けたネットワーク
Netskope Cloud Exchange

Netskope Cloud Exchange (CE) は、セキュリティポスチャに対する投資を活用するための強力な統合ツールを提供します。

Cloud Exchangeについて学ぶ
Aerial view of a city
  • Security Service Edge(SSE) シェブロン

    高度なクラウド対応の脅威から保護し、あらゆるベクトルにわたってデータを保護

  • SD-WAN シェブロン

    すべてのリモートユーザー、デバイス、サイト、クラウドへ安全で高性能なアクセスを提供

  • Secure Access Service Edge シェブロン

    Netskope One SASE は、クラウドネイティブで完全に統合された単一ベンダーの SASE ソリューションを提供します。

未来のプラットフォームはNetskopeです

Security Service Edge (SSE)、 Cloud Access Security ブローカ (CASB)、 Cloud Firewall、 Next Generation Secure Web Gateway (SWG)、および Private Access for ZTNA a 13 にネイティブに組み込まれており、 Secure Access Service Edge (SASE) アーキテクチャへの旅ですべてのビジネスを支援します。

製品概要はこちら
Netskopeの動画
Next Gen SASE Branch はハイブリッドである:接続、保護、自動化

Netskope Next Gen SASE Branchは、コンテキストアウェアSASEファブリック、ゼロトラストハイブリッドセキュリティ、 SkopeAI-Powered Cloud Orchestrator を統合クラウド製品に統合し、ボーダレスエンタープライズ向けに完全に最新化されたブランチエクスペリエンスを実現します。

Next Gen SASE Branchの詳細はこちら
オープンスペースオフィスの様子
ダミーのためのSASEアーキテクチャ

SASE設計について網羅した電子書籍を無償でダウンロード

電子書籍を入手する
ダミーのためのSASEアーキテクチャ eBook
最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

NewEdgeの詳細
山腹のスイッチバックを通るライトアップされた高速道路
アプリケーションのアクセス制御、リアルタイムのユーザーコーチング、クラス最高のデータ保護により、生成型AIアプリケーションを安全に使用できるようにします。

生成AIの使用を保護する方法を学ぶ
ChatGPTと生成AIを安全に有効にする
SSEおよびSASE展開のためのゼロトラストソリューション

ゼロトラストについて学ぶ
大海原を走るボート
NetskopeがFedRAMPの高認証を達成

政府機関の変革を加速するには、Netskope GovCloud を選択してください。

Netskope GovCloud について学ぶ
Netskope GovCloud
  • リソース シェブロン

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ シェブロン

    Netskopeがセキュアアクセスサービスエッジ(SASE)を通じてセキュリティとネットワーキングの変革を実現する方法をご覧ください

  • イベント&ワークショップ シェブロン

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ シェブロン

    サイバーセキュリティ百科事典、知っておくべきすべてのこと

「セキュリティビジョナリー」ポッドキャスト

2025年の予測
今回の Security Visionaries では、Wondros の社長であり、Cybersecurity and Infrastructure Security Agency (CISA) の元首席補佐官である Kiersten Todt 氏が、2025 年以降の予測について語ります。

ポッドキャストを再生する Browse all podcasts
2025年の予測
最新のブログ

Netskopeがセキュアアクセスサービスエッジ(SASE)機能を通じてゼロトラストとSASEの旅をどのように実現できるかをお読みください。

ブログを読む
日の出と曇り空
SASE Week 2024 オンデマンド

SASEとゼロトラストの最新の進歩をナビゲートする方法を学び、これらのフレームワークがサイバーセキュリティとインフラストラクチャの課題に対処するためにどのように適応しているかを探ります

セッションの詳細
SASE Week 2024
SASEとは

クラウド優位の今日のビジネスモデルにおいて、ネットワークとセキュリティツールの今後の融合について学びます。

SASEについて学ぶ
  • 会社概要 シェブロン

    クラウド、データ、ネットワークセキュリティの課題に対して一歩先を行くサポートを提供

  • 採用情報 シェブロン

    Netskopeの3,000 +素晴らしいチームメンバーに参加して、業界をリードするクラウドネイティブセキュリティプラットフォームを構築してください。

  • カスタマーソリューション シェブロン

    お客様の成功のために、Netskopeはあらゆるステップを支援いたします。

  • トレーニングと認定 シェブロン

    Netskopeのトレーニングで、クラウドセキュリティのスキルを学ぶ

データセキュリティによる持続可能性のサポート

Netskope は、持続可能性における民間企業の役割についての認識を高めることを目的としたイニシアチブである「ビジョン2045」に参加できることを誇りに思っています。

詳しくはこちら
データセキュリティによる持続可能性のサポート
クラウドセキュリティの未来を形作る

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

チームに参加する
Netskopeで働く
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

カスタマーソリューションに移動
Netskopeプロフェッショナルサービス
Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

トレーニングと認定資格について学ぶ
働く若い専門家のグループ

In the Blink of AI — How Artificial Intelligence is Changing the Way Enterprises Protect Sensitive Data in Images

Jul 27 2020

Co-authored by Yihua Liao and Yi Zhang

You have probably heard of how AI technology is used to recognize cats, dogs and humans in images, a task known as image classification. The same technology that identifies a cat or dog – can also identify sensitive data (such as identification cards and medical records) in images traversing your corporate network. In this blog post, we will show you how we use convolutional neural networks (CNN), transfer learning, and generative adversarial networks (GAN) to provide image data protection for Netskope’s enterprise customers. 

Image Data Security

Images represent over 25% of the corporate user traffic that goes through Netskope’s Data Loss Prevention (DLP) platform. Many of these images contain sensitive information, including customer or employee personally identifiable information (PII) (e.g., pictures of passports, driver’s licenses, and credit cards), screenshots of intellectual property, and confidential financial documents. By detecting sensitive information in images, documents, and application traffic flows, we help organizations comply with compliance regulations and protect their assets.

The traditional approach to identifying sensitive data in an image has been to use optical character recognition (OCR) to extract text out of the image. The extracted text is then used for pattern matching. This technology, though effective, is resource-intensive and delays detection of security violations. OCR also has difficulties identifying violations in low-quality images. In many cases, we only need to determine the classification of the input image. For example, we would like to find out whether an image is a credit card or not, without knowing the 16-digit card number and other details in the image. Machine learning-based image classification is an ideal choice for that because of its accuracy, speed and ability to work inline with granular policy controls. We can also combine image classification with OCR to generate more detailed violation alerts. 

CNN and Transfer Learning

Deep learning and convolutional neural networks (CNN) were a huge breakthrough in image classification in the early 2010s. Since then, CNN-based image classification has been applied to many different domains, including medicine, autonomous vehicles, and security, with accuracy close to that of humans. Inspired by how the human visual cortex works, a CNN is able to effectively capture the shapes, objects and other qualities to better understand the contents of the image. A typical CNN has two parts (depicted in the chart below):

  • The convolutional base, which consists of a stack of convolutional and pooling layers. The main goal of the convolutional base is to generate features from the image. It builds progressively higher-level features out of an input image. The early layers refer to general features, such as edges, lines, and dots in the image. Meanwhile, the latter layers refer to task-specific features, which are more human interpretable,  such as the logo on a credit card, or application windows in a screenshot. 
  • The classifier, which is usually composed of fully connected layers. Think of the classifier as a machine that sorts the features identified in the convolutional base. The classifier will tell you if the features identified are a cat, dog, drivers license, or X-ray.
Diagram of CNN and transfer learning
Image Source: DOI: 10.3390/electronics8030292

You may need millions of labeled images to train a CNN from scratch in order to achieve state-of-the-art classification accuracy. It is not trivial to collect a large number of images with proper labels, especially when you are dealing with sensitive data such as passports and credit cards. Fortunately, we can use transfer learning, a popular deep learning technique, to train a neural network with just hundreds or thousands of training samples. With transfer learning, we can leverage an existing convolutional neural network (e.g., ResNet or MobileNet) that was trained on a large dataset to classify other objects, and tweak it to train with additional images. Transfer learning allows us to train a CNN image classifier with a limited dataset and still achieve good performance while significantly reducing the training time.

Synthetic Training Data Generation

It’s very challenging to acquire real images for the sensitive categories we are interested in. To increase the amount and diversity of the training dataset and further improve the accuracy of CNN classifiers, we use generative adversarial networks (GAN) to generate synthetic training data. The basic idea of a GAN is to create two neural networks (high-level architecture diagram below), which compete against each other. One neural network, called the generator, generates fake data, while the other, the discriminator, evaluates them for authenticity. The goal is to generate data that is similar to the training data and fool the discriminator.

Diagram of GAN
Image Source: Deep Convolutional Generative Adversarial Networks

With a GAN, we are able to synthesize photorealistic images with varying degrees of change in rotation, color, blurring, background, and so on. Here are a few examples of the synthetic images:

Examples of synthetic images

Netskope’s Inline DLP Image Classifiers

At Netskope, we have developed CNN-based image classifiers, as part of our Next Gen SWG and cloud inline solutions covering managed apps, unmanaged apps, custom apps, and public cloud service user traffic. The classifiers are able to accurately identify images with sensitive information, including passports, driver’s licenses, US social security cards, credit cards and debit cards, fullscreen and application screenshots, etc. The inline classifiers provide granular policy controls in real-time.

Examples of passports, drivers licenses, social security numbers, and credit/debit cards
Screenshots of examples

Future Work

At Netskope, we are actively expanding our portfolio of inline image classifiers with the latest computer vision technology. We also have the capability to train custom classifiers and identify new types of images that our customers are interested in classifying. If your organization has unique assets that may be shared in images and you’d like to protect those assets, please contact us at [email protected] to learn more.

author image
Yihua Liao
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.

Stay informed!

Subscribe for the latest from the Netskope Blog